DEPARTMENT OF PUBLIC HEALTH AND ENVIRONMENT

Water Quality Control Commission

REGULATION NO. 37 - CLASSIFICATIONS AND NUMERIC STANDARDS FOR LOWER COLORADO RIVER BASIN

5 CCR 1002-37

[Editor's Notes follow the text of the rules at the end of this CCR Document.]

37.6 TABLES

(3) <u>Table Value Standards</u>

In certain instances in the tables in Appendix 37-1, the designation "TVS" is used to indicate that for a particular parameter a "table value standard" has been adopted. This designation refers to numerical criteria set forth in the Basic Standards and Methodologies for Surface Water. The criteria for which the TVS are applicable are on the following table.

TABLE VALUE STANDARDS (Concentrations in µg/l unless noted)

PARAMETER ⁽¹⁾	TABLE VALUE STANDARDS ⁽²⁾⁽³⁾						
Aluminum (Trec)	Acute = $e^{(1.3695[ln(hardness)]+1.8308)}$						
	pH equal to or greater than 7.0						
	Chronic=e ^{(1.3695[In(hardness)]-0.1158)}						
	pH less than 7.0						
	Chronic= e ^{(1.3695[ln(hardness)]-0.1158)} or 87, whichever is more stringent						
Ammonia ⁽⁴⁾	Cold Water = (mg/l as N)Total						
	0.275 39.0						
	$acute = \frac{0.275}{1+10^{7.204-pH}} + \frac{39.0}{1+10^{pH-7.204}}$						
	$chronic = \left(\frac{0.0577}{1+10^{7.688-pH}} + \frac{2.487}{1+10^{pH-7.688}}\right) * MIN\left(2.85, 1.45 * 10^{0.028(25-T)}\right)$						
	Warm Water = (mg/l as N)Total						
	0.411 58.4						
	$acute = \frac{0.411}{1+10} + \frac{58.4}{1+10} + 5$						
	chronic $(Apr1 - Aug31) = \left(\frac{0.0577}{1+10^{7.688-pH}} + \frac{2.487}{1+10^{pH-7.688}}\right) * MIN \left(2.85, 1.45 * 10^{0.028(25-T)}\right)$						
	$chronic (Sep 1 - Mar 31) = \left(\frac{0.0577}{1+10^{7.688-pH}} + \frac{2.487}{1+10^{pH-7.688}}\right) * 1.45 * 10^{0.028 * (25 - MAX(T, 7))}$						

Cadmium	Acute(warm) ⁽⁵⁾ =	= (1.136	672-(In(hardness)* 0.0	041838))*e ^{(0.9789}	*In(hardness)-3.4	43)			
	$\frac{\text{Acute(warm)}^{(5)} = (1.136672 - (\ln(\text{hardness})^* \ 0.041838))^* e^{(0.9789^*\ln(\text{hardness}) - 3.443)}}{\text{Acute(cold)}^{(5)} = (1.136672 - (\ln(\text{hardness})^* \ 0.041838))^* e^{(0.9789^*\ln(\text{hardness}) - 3.866)}}$								
	$\frac{(1.101672 - (\ln(hardness)^* 0.041838))}{(hardness)^* 0.041838)} e^{(0.7977*\ln(hardness)^* 3.909)}$								
	Acute = (1.136672-[In(hardness) x (0.041838)]) x e ^{0.9151[In(hardness)] 3.1485} Acute(Trout) = (1.136672-[In(hardness)x (0.041838)]) x e ^{0.9151[In(hardness)] 3.6236}								
	$\frac{\text{Cute(frout)} = (1.136672-[In(hardness)x (0.041838)]) \times e^{0.7998[in(hardness)]-4.4451}}{\text{Chronic} = (1.101672-[In(hardness) \times (0.041838)]) \times e^{0.7998[in(hardness)]-4.4451}}$								
Chromium III ⁽⁵⁶⁾	Acute = $e^{(0.819[ln($	$\frac{Chronic = (1.101672-[in(hardness) x(0.041838)]) x e^{0.7880[in(hardness)]^{-1.461}}}{Acute = e^{(0.819[in(hardness)]+2.5736)}}$							
	Chronic = $e^{(0.819)}$								
Chromium VI ⁽⁵⁶⁾	Acute = 16								
	Chronic = 11								
Copper	$Acute = e^{(0.9422[in(hardness)]-1.7408)}$								
	$Chronic = e^{(0.8545[ln(hardness)]-1.7428)}$								
Lead	Acute = (1.46203-[In(hardness)*(0.145712)])*e ^{(1.273[In(hardness)]-1.46)}								
	Chronic =(1.46203-[In (hardness)*(0.145712)])*e ^{(1.273[In(hardness)]-4.705)}								
Manganese	Acute = $e^{(0.3331[ln(hardness)]+6.4676)}$								
	Chronic = $e^{(0.3331[ln(hardness)]+5.8743)}$								
Nickel	Acute = $e^{(0.846[ln($	$Acute = e^{(0.846[In(hardness)]+2.253)}$							
	$Chronic = e^{(0.846[ln(hardness)]+0.0554)}$								
Selenium ^(6<u>7</u>)	Acute = 18.4								
0.11	Chronic = 4.6 Acute = $\frac{1}{2}e^{(1.72[\ln(hardness)]-6.52)}$								
Silver									
	$Chronic = e^{(1.72[ln(hardness)]-9.06)}$ Chronic(Trout) = e^{(1.72[ln(hardness)]-10.51)}								
Temperature		= e	SPECIES		TEMPERA	TURE			
remperature	TEMPERATURE	TIER	EXPECTED TO BE	APPLICABLE	STANDAR				
	TIER	CODE	PRESENT	MONTHS	(MWAT)	(DM)			
	Cold Stream	CS-I	brook trout, cutthroat	June – Sept.	17.0	21.7			
	Tier I ^(7<u>8</u>)		trout	Oct. – May	9.0	13.0			
	Cold Stream	CS-II	all other cold-water species	April – Oct.	18.3	24.3			
	Tier II ^{(7<u>8</u>) Cold Lake}	CL	brook trout, brown	Nov. – March April – Dec.	9.0 17.0	13.0 21.2			
	COIU Lake	UL UL	trout, cutthroat trout,	April – Dec.	17.0	21.2			
			lake trout, rainbow	Jan. – March	9.0	13.0			
			trout, Arctic grayling, sockeye salmon						
	Cold Large	CLL	brown trout, lake trout,	April – Dec.	18.3	24.2			
	Lake (>100	_	rainbow trout	•					
	acres surface			Jan. – March	9.0	13.0			
	area)		oommon obinor	Marah New	04.0	20.0			
	Warm Stream Tier I	WS-I	common shiner, Johnny darter,	March – Nov.	24.2	29.0			
			orangethroat darter,	Dec. – Feb.	12.1	24.6			
	Warm Stream	WS-II	stonecat brook stickleback,	March – Nov.	27.5	20.6			
	Tier II	vv3-11	central stoneroller,	March – Nov.	27.5	28.6			
			creek chub, longnose						
			dace, Northern redbelly dace, finescale dace.	Dec. – Feb.	13.8	25.2			
			razorback sucker,	200. 100.	10.0	20.2			
			white sucker, mountain						
	Warm Stream	WS-III	sucker all other warm-water	March – Nov.	28.7	31.8			
	Tier III	vv 3-111	Species	Dec. – Feb.	14.3	24.9			
	Warm Lakes	WL	yellow perch, walleye,	April – Dec.	26.2	29.3			
			pumpkinseed,						
			smallmouth bass, striped bass, white						
			bass, largemouth bass,						
			bluegill, spottail shiner,						

		stonecat, northern pike, tiger muskellunge, black crappie, common carp, gizzard shad, sauger, white crappie, wiper	Jan. – March	13.1	24.1		
Uranium	Acute = $e^{(1.1021[ln(hardness)]+2.7088)}$						
	$Chronic = e^{(1.1021[ln(hardness)]+2.2382)}$						
Zinc	inc Acute = $0.978^{*}e^{(0.9094[ln(hardness)]+0.9095)}$ Chronic = $0.986^{*}e^{(0.9094[ln(hardness)]+0.6235)}$ if hardness less than 102 mg/l CaCO ³ Chronic (sculpin) = $e^{(2.140[ln(hardness)]-5.084)}$						

TABLE VALUE STANDARDS - FOOTNOTES

- (1) Metals are stated as dissolved unless otherwise specified.
- (2) Hardness values to be used in equations are in mg/l as calcium carbonate and shall be no greater than 400 mg/L. The hardness values used in calculating the appropriate metal standard should be based on the lower 95 per cent confidence limit of the mean hardness value at the periodic low flow criteria as determined from a regression analysis of site-specific data. Where insufficient site-specific data exists to define the mean hardness value at the periodic low flow criteria, representative regional data shall be used to perform the regression analysis. Where a regression analysis is not appropriate, a sitespecific method should be used. In calculating a hardness value, regression analyses should not be extrapolated past the point that data exist.
- (3) Both acute and chronic numbers adopted as stream standards are levels not to be exceeded more than once every three years on the average.
- (4) For acute conditions the default assumption is that salmonids could be present in cold water segments and should be protected, and that salmonids do not need to be protected in warm water segments. For chronic conditions, the default assumptions are that early life stages could be present all year in cold water segments and should be protected. In warm water segments the default assumption is that early life stages are present and should be protected only from April 1 through August 31. These assumptions can be modified by the Commission on a site-specific basis where appropriate evidence is submitted.
- (5) The acute(warm) cadmium equation applies to segments classified as Aquatic Life Warm Class 1 or 2. The acute(cold) cadmium equation applies to segments classified as Aquatic Life Cold Class 1 or 2.
- (56) Unless the stability of the chromium valence state in receiving waters can be clearly demonstrated, the standard for chromium should be in terms of chromium VI. In no case can the sum of the instream levels of Hexavalent and Trivalent Chromium exceed the water supply standard of 50 μg/l total chromium in those waters classified for domestic water use.
- (67) Selenium is a bioaccumulative metal and subject to a range of toxicity values depending upon numerous site-specific variables.
- (78) Mountain whitefish-based summer temperature criteria [16.9 (ch), 21.2 (ac)] apply when and where spawning and sensitive early life stages of this species are known to occur.

37.42 STATEMENT OF BASIS, SPECIFIC STATUTORY AUTHORITY AND PURPOSE; DECEMBER 9, 2019 RULEMAKING; FINAL ACTION JANUARY 13, 2020; EFFECTIVE DATE JUNE 30, 2020

The provisions of C.R.S. 25-8-202(1)(a), (b) and (2); 25-8-203; 25-8-204; and 25-8-402; provide the specific statutory authority for adoption of these regulatory amendments. The Commission also adopted in compliance with 24-4-103(4) C.R.S. the following statement of basis and purpose.

BASIS AND PURPOSE

Cadmium is a naturally-occurring element frequently found alongside other metals, and numerous treatment techniques are available to remove cadmium from wastewater. Cadmium has both acute and chronic effects on aquatic life, and can negatively impact survival, growth, reproduction, immune and endocrine systems, development, and behavior.

The commission revised the hardness-based cadmium table value standards to protect the Aquatic Life use. The updated standards incorporate toxicity data that have become available since the cadmium standards were last updated in the 2005 Regulation No. 31 rulemaking hearing. The updated standards are based on the United States Environmental Protection Agency's (EPA) "Aquatic Life Ambient Water Quality Criteria – 2016" and toxicity data that have become available since EPA's recommended criteria were released in 2016.

The updated standards include two acute equations (acute(cold) and acute(warm)) and one chronic equation. The acute(cold) and chronic equations are the same as the acute and chronic criteria recommended by EPA in 2016. The acute(cold) equation, which is lowered to protect trout, is protective of trout and other sensitive cold water species and applies in segments classified as Aquatic Life Cold Class 1 or 2. The acute(warm) equation, which is not lowered to protect trout, is protective of warm water species and applies in segments classified as Aquatic Life Warm Class 1 or 2. The chronic equation is protective of both cold and warm water aquatic life and applies in segments classified as either Aquatic Life Cold Class 1 or 2 or Aquatic Life Warm Class 1 or 2.

Compared to the previous cadmium table value standards, the updated standards are generally less stringent. The acute(cold) standard is less stringent than the previous acute(trout) standard when water hardness is greater than 45 mg/L CaCO₃. The acute(warm) equation is less stringent than the previous acute standard when water hardness is greater than 101 mg/L CaCO₃. The updated chronic equation is less stringent than the previous stringent than the previous acute standard when water hardness is greater than 101 mg/L CaCO₃. The updated chronic equation is less stringent than the previous chronic standard at all water hardness values.

In the past, Colorado has had separate acute equations for waters with trout and waters without trout. The updated standards include separate acute equations for cold waters (both with and without trout) and warm waters. This change in approach is due to the addition of toxicity data showing that sculpin, which inhabit cold waters, are also sensitive to cadmium. To ensure protection of sculpin and other sensitive cold water aquatic life in waters where trout are absent, the acute(cold) equation applies to all cold waters. As a result, the acute trout (tr) qualifier for cadmium is no longer needed on select cold water segments and was deleted from all segments where it had applied.

During the 2019 basin review, the commission adopted EPA's 2016 recommended criteria as site-specific standards in select cold water segments. The updated table value standards for cold waters are the same as EPA's 2016 recommended criteria. Therefore, to reflect the commission's state-wide adoption of the updated table value standards, the cadmium "SSE" were replaced with "TVS" on the following segments:

Lower Colorado: 4e (chronic only)
